Roll No.
Total No. of Questions: 09]
[Total No. of Pages : 03

B.Tech. (Sem. $-2^{\text {nd }}$)
 ENGINEERING MATHEMATICS - II
 SUBJECT CODE : AM - 102 ($2 \mathrm{k} 4 \&$ Onwards)
 Paper ID : [A0119]

[Note : Please fill subject code and paper ID on OMR]
Time : 03 Hours
Maximum Marks : 60

Instruction to Candidates:

1) Section - A is Compulsory.
2) Attempt any Five questions from Section - B and C.
3) Select atleast Two questions from Section - B and C.

Section-A

Q1)
(Marks : 2 each)
a) Define Rank of a matrix. What is the rank of a non singular matrix of order n ?
b) Reduce the following differential equation into exact differential equation. $\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0$
c) Solve the equation $\frac{d^{4} y}{d x^{4}}+2 \frac{d^{2} y}{d x^{2}}+y=0$.
d) State the condition when the system of non-homogeneous simultaneous linear equations has a unique solution and infinite solutions.
e) Find div. $\overrightarrow{\mathrm{F}}$ where $\overrightarrow{\mathrm{F}}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$.
f) State
(i) Stoke's theorem
(ii) Gauss divergence theorem.
g) What is Random Variable? Give an example to explain the definition.
h) Define Probability. A and B throw alternately a pair of dice. A wins if he throws 6 before B throws 7 and B wins if he throw 7 before A throws 6 . If A begins, find his chance of winning.
i) What is Hermitian matrix give an example?
j) Prove that $\nabla . \nabla \times \overrightarrow{\mathrm{F}}=0$.

Section - B

(Marks : 8 each)
Q2) Using Gauss-Jordan method, find the inverse of the matrix $\left[\begin{array}{ccc}1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4\end{array}\right]$.

Q3) Determine the rank of the matrix $\left[\begin{array}{ccc}3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2\end{array}\right]$ and hence state whether the row vectors are Linearly independent or Linearly Dependent.

Q4) Solve
(a) $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x} \sin x$.
(b) Use method of variation of parameters to solve $\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x$.

Q5) A particle of mass ' m ' executes S.H.M in the line joining the points A and B, on a smooth table and is connected with these points by elastic strings whose tensions in equilibrium are each T. If l, l^{\prime} be the extensions of the strings beyond their natural lengths, find the time of an oscillation.

Section - C

(Marks: 8 each)
Q6) Show that the following vectors are solenoidal.
(a) $(x+3 y) \hat{i}+(y-3 z) \hat{j}+(x-2 z) \hat{k}$
(b) $\nabla \phi \times \nabla \chi$

Q7) Verify Divergence theorem for $\overrightarrow{\mathrm{F}}=\left(x^{2}-y z\right) \hat{i}+\left(y^{2}-z x\right) \hat{j}+\left(z^{2}-x y\right) \hat{k}$ taken over the rectangular parallelopiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.

Q8) In a normal distribution, 31% of the items are under 45 and 8% are over 64 . Find the mean and S.D. of the distribution.

Q9) A set of five similar coins is tossed 320 times and the result is

No. of heads :	0	1	2	3	4	5
Frequency $:$	6	27	72	112	71	32

Test the hypothesis that the data follow a binomial distribution.

$$
t+t+
$$

